

Practical Power System Harmonics, Earthing and Power Quality - Problems and Solutions

Contents

	ACKN	owieagements	ΧI
1	Power Quality Overview		1
	1.1	Introduction	2
	1.2	Limits on electrical parameters	2
	1.3	What is power quality?	3
	1.4	Power quality indicators	4
	1.5	Need for improving power quality	10
	1.6	Summary	11
2	Dealing with Power Interruptions		13
	2.1	Introduction	13
	2.2	Needs of equipment	14
	2.3	Understanding failures	14
	2.4	Effect of power interruptions	14
	2.5	Planning for reliability	16
	2.6	Redundancy and automation	17
	2.7	Uninterrupted power supply systems	21
	2.8	Rotary UPS systems	22
	2.9	Advanced rotary UPS systems	25
	2.10	Hybrid UPS system	27
	2.11	Static UPS systems	28
	2.12	General configuration	28
	2.13	Types of static UPS systems	30
	2.14	UPS metering, indications, alarms and protection	34
	2.15	Other types of UPS systems	34
	2.16	Power quality and UPS	36
	2.17	UPS applications to computer loads	36
	2.18	UPS configurations in computer installations	38
	2.19	Rating of UPS systems for computer equipment	39
	2.20	Redundant UPS configuration	40
	2.21	Summary	41

Technology Training that Works

3	Vol	tage Variations	43
-	3.1	Introduction	43
	3.2	Variations in voltage amplitude	43
	3.3	Reasons for voltage amplitude changes	44
	3.4	Voltage sag	46
	3.5	Effects of sags	46
	3.6	Swell and its effects	47
	3.7	Equipment sensitivity	48
	3.8	Handling voltage abnormalities	50
	3.9	Control measures for mitigation	51
	3.10	System changes for voltage improvements	52
	3.11	Tackling voltage fluctuations and flicker	55
	3.12	Summary	55
4	Sur	ges and Surge Protection	57
	4.1	Introduction	57
	4.2	Surges, their causes and mitigation	58
	4.3	Lightning - the external source of electrical surges	60
	4.4	How surges find their way into electrical circuits	63
	4.5	Bonding of grounding systems as a means of surge mitigation	65
	4.6	Basic principle of surge protection	68
	4.7	Surge protection devices	69
	4.8	Graded surge protection	72
	4.9	Selection criteria of devices for surge protection	77
	4.10	Positioning and selection of lightning/surge arrestor	77
	4.11	A practical view of surge protection for sensitive equipment	80
	4.12	Other ways of mitigation of surges	83
	4.13	Codes on surge protection	86
	4.14	Surge protection of sensitive circuits	87
	4.15	Hybrid SPDs for signal applications	88
	4.16	Protection of Instrumentation systems	89
	4.17	Surge protection of transmitters (general)	90
	4.18	Surge protection of transmitters at the field end	91
	4.19	Comprehensive loop protection	92
	4.20	SPDs for other types of sensors	93
	4.21	Protection of telemetry systems	94

Technology Training that Works

	4.22	Protection of data communication systems	95	
	4.23	SPD for hazardous applications	96	
	4.24	Grounding of intrinsically safe circuits	97	
	4.25	Summary	99	
5	Volt	age Asymmetry	101	
	5.1	Introduction	101	
	5.2	Reasons for asymmetry	101	
	5.3	Analysis of asymmetrical quantities	103	
	5.4	Effects of asymmetry	105	
	5.5	Permissible limits of asymmetry	106	
	5.6	Dealing with asymmetrical loads	106	
	5.7	Summary	107	
6	Har	monics in Power Systems	109	
	6.1	Introduction	109	
	6.2	Linear and non-linear loads	110	
	6.3	Harmonic components	113	
	6.4	Harmonic currents and voltage distortion	115	
	6.5	Problems due to harmonics	118	
	6.6	Limits of harmonic presence in a power system	128	
	6.7	Measurement of current containing harmonics	129	
	6.8	Analysis of harmonic components	130	
	6.9	Methods of harmonic control	131	
	6.10	Summary	140	
7	Elec	ctrical Noise and Mitigation	143	
	7.1	Introduction	143	
	7.2	Definition of electrical noise	143	
	7.3	How are sensitive circuits affected by noise?	146	
	7.4	Time and frequency domain representation of noise	148	
	7.5	Categories of noise	151	
	7.6	Noise from nearby electrical equipment	152	
	7.7	Ground Loop as a source of noise	153	
	7.8	Control of noise in signal cables	155	
	7.9	Electrostatic or capacitive coupling	157	
	7.10	Importance of grounding in noise control	163	
	7.11	Zero signal reference grid and signal transport ground plane	165	
	7.12	Summary	168	

Technology Training that Works

8	Syst	em Planning and Installation Guidelines	169	
	8.1	Introduction	169	
	8.2	Power interruptions	170	
	8.3	Issues of location	170	
	8.4	Commercial power	171	
	8.5	Information from equipment vendors	172	
	8.6	Power requirements and available power conditioning options	175	
	8.7	Noise suppression sensitive loads by proper grounding	176	
	8.8	Checking for redundancy requirement	176	
	8.9	Signal/data cabling susceptibility	177	
	8.10	Radio Frequency Interference (RFI) protection	177	
	8.11	Static electricity related problems	177	
	8.12	Lightning and surge protection	178	
	8.13	Documentation	178	
	8.14	Planned maintenance	179	
	8.15	Summary	180	
9	Surv	ey of Power Quality Problems and Solutions	181	
	9.1	Introduction	181	
	9.2	Problems commonly experienced	182	
	9.3	Solutions normally adopted	183	
	9.4	Summary	185	
10	Pow	er quality site study	187	
10.1	Int	roduction	187	
10.2	Sit	e study objectives	187	
10.3		fining the problem	189	
10.4		ordination with other agencies	189	
10.5	Co	onducting the study	190	
10.6		vel 1 study	190	
10.7		vel 2 study	197	
10.8	Lis	st of instruments	201	
10.9	Su	mmarv	201	

Appendix A	Power quality – the utility perspective	207
Appendix B	Case studies	223
Appendix C	Power recorder system example	269
Appendix D	Glossary of terms	295
Appendix E	Practical exercises	305