

Troubleshooting, Maintenance & Protection of AC Electrical Motors and Drives

Contents

<u>1</u>	Basic principles of motor technology	1
1.1	Introduction	1
1.2	Basic principles of electrical machines	12
1.3	AC power systems	21
1.4	Meters used in troubleshooting	25
1.5	Harmonics in a power system	25
2	AC motor theory, construction and maintenance	29
2.1	Introduction	29
2.2	Fundamentals of 3-phase AC motors	29
2.3	Fundamentals of single phase AC motors	40
2.4	Motor enclosures	43
2.5	Motor terminal identification and connection diagram	45
2.6	Motor rating and insulation types	46
2.7	Operating a motor for forward and reverse operation	48
2.8	Motor braking methods	50
2.9	Measurements used for a motor	62
2.10	Motor failures and methods to extend life	62
2.11	Motor control trouble - remedy table	63
2.12	Motor starter check chart	65
3	3-phase AC induction motors	69
3.1	Introduction	69
3.2	Basic construction	70
3.3	Principles of operation	71

Technology Training that Works

3.4	The equivalent circuit	74
3.5	Electrical and mechanical performance	78
3.6	Motor acceleration	81
3.7	AC induction generator performance	83
3.8	Efficiency of electric motors	84
3.9	Rating of AC induction motors	85
3.10	Electric motor duty cycles	88
3.11	Cooling and ventilation of electric motors (IC)	94
3.12	Degree of protection of motor enclosures (IP)	96
3.13	Construction and mounting of AC induction motors	96
3.14	Anti-condensation heaters	98
3.15	Methods of starting AC induction motors	99
3.16	Motor selection	99
4	Motor protection relays	101
4.1	Introduction	101
4.2	Early motor protection relays	104
4.3	Steady state temperature rise	105
4.4	Thermal time constant	106
4.5	Motor current during start and stall conditions	106
4.6	Stalling of motors	107
4.7	Unbalanced supply voltages	110
4.8	Determination of sequence currents	110
4.9	De-Rating of machine due to unbalanced currents	111
4.10	Electrical faults in stator windings earth faults phase	112
4.11	General	113
5	Power electronic converters	115
5.1	Introduction	115
5.2	Definitions	115
5.3	Power diodes	118
5.4	Power thyristors	120
5.5	Commutation	123
5.6	Power electronic rectifiers (AC/DC converters)	124

	Technology Training that Works	
5.7	Gate commutated inverters (DC/AC converters)	141
5.8	Gate controlled power electronic devices	151
5.9	Other power converter circuit components	160
6	Protection of AC converters and motors	163
6.1	Introduction	163
6.2	AC frequency converter protection circuits	163
6.3	Operator information and fault diagnostics	171
6.4	Electric motor protection	174
6.5	Thermal overload protection - current sensors	175
6.6	Thermal overload protection - direct temperature sensing	176
7	Control systems for AC variable speed drive	179
7.1	The overall control system	179
7.2	Power supply to the control system	180
7.3	The DC bus charging control system	182
7.4	The PWM rectifier for AC converters	184
7.5	Variable speed drive control loops	186
7.6	Vector control for AC drives	190
7.7	Current feedback in AC variable speed drives	198
7.8	Speed feedback from the motor	200
8	The selection of AC converters	201
8.1	Introduction	201
8.2	The basic selection procedure	202
8.3	The loadability of converter fed squirrel cage motors	203
8.4	Operation in the constant power region	205
8.5	The nature of the machine load	206
8.6	The requirements for starting	217
8.7	The requirements for stopping	218
8.8	Control of speed, torque and accuracy	225
8.9	Selecting the correct size of motor and converter	225
8.10	Summary of the selection procedures	227

Technology Training that Works				
9	Installation and commissioning of AC variable	231		
9.1	General installation and environmental requirements	231		
9.2	Power supply connections and earthing requirements	234		
9.3	Start/Stop control of AC drives	237		
9.4	Installing AC converters into metal enclosures	238		
9.5	Control wiring for variable speed drives	244		
9.6	Commissioning variable speed drives	249		
10	Special topics and new developments	251		
10.1	Soft-switching	251		
10.2	The matrix converter	253		
Appe	ndix A: Motor protection (direct temperature sensing)	255		
Appe	ndix B: Current measurement transducers	267		
Appe	ndix C: Speed measurement transducers	271		
Appe	ndix D: International & national standards	283		
Appe	ndix E: Determination of efficiency and losses of AC cage motors	287		
Appe	ndix F: Glossary of common terms (used with AC variable speed drives)	313		
Bibl	iography	323		