
IDC Technologies - Books - 1031 Wellington Street
West Perth
WA 6005

Phone: +61 8 9321 1702 - Email:
publishing@eit.edu.au

 PR-E - Industrial Programming using 61131-3
for PLCs

 Availability: In Stock

Price: $139.94
 Ex Tax: $127.22

Short Description
PLCs have become part of the backbone of industrial automation. The
International Electro-technical Commission (IEC) has developed a standard set
of programming languages for industrial PLCs. The success of these languages
can be measured by the large number of major PLC manufacturers who are
developing products that are 61131-3 compliant.

Description
PLCs have become part of the backbone of industrial automation. The
International Electro-technical Commission (IEC) has developed a standard set
of programming languages for industrial PLCs. The success of these languages
can be measured by the large number of major PLC manufacturers who are
developing products that are 61131-3 compliant.

IEC 61131-3 is becoming the standard of choice in many industries, and will
boost productivity and enhance software quality. If you master the subject today
your programming knowledge will be applicable across brands well into the
future. This knowledge is vital for personal career development. The aim of this
manual is to go beyond the basic concepts and introduce you to the practical
techniques and applications of 61131-3. It cuts across apparent differences

wherever PLCs are used and introduces standards that are widely applicable.

If you ever need to program PLCs or just understand more about their
capabilities, then this manual is for you. It is pitched at an intermediate level
suitable for anyone with some experience with PLCs. If you are a trainee
engineer, graduate, control systems engineer, technician, or senior operator you
will gain essential knowledge that will significantly enhance existing knowledge of
PLCs.

Table of Contents
Download Chapter List

Table of Contents

First Chapter
An introduction to Practical Industrial Programming using 61131-3 for PLCs

1 An introduction to IEC standard 1131 part-3 on PLC programming

This chapter contains information on the use and growth of programmable
controllers in industry, the basic problems in the earlier approach adopted for
programming these devices and the move towards development of standards for
programming. It also discusses the contribution of the standard in improvement
of software quality, productivity and maintainability.

Objectives

On completing the study of this chapter, you will learn:

The basics of Programmable controllers and their role in modern industry
The need for standardization of PLC languages
A review of the programming approach prevailing before the evolution of
the standard and its shortcomings
The features of IEC 1131-3 and its contribution towards qualitative
improvements to control software
Move towards open vendor independent systems and software portability

Note

Before we go further, we will get a few basic aspects clear in our minds.

The International Electro-technical Commission (IEC for short) is the Geneva
based international standards making body, which formulates standards for
electrical and electronic equipment. These are adopted both within Europe and in
most other industrial nations of the world and integrated into their national
standards (incorporating regional variations where required). IEC 1131 is the
standard relating to programmable controllers. Part 3 of this standard deals with
the languages used for programming these devices and is commonly referred as
IEC-1131-3. Even though IEC has renumbered its standards since 1997 by
prefixing the numeral 6, we will refer to it by the earlier designation of 1131-3,
which is still widely used in the industry rather than 61131-3.

The standard IEC-1131 is organized as follows:

Part Title
1 General information
2 Equipment requirements and tests
3 Programmable languages
4 User guidelines
5 Messaging service specification
6 Communication via fieldbus
7 Fuzzy control programming
8 Guidelines for implementation of languages for programmable

controllers
 The standard uses the acronym of PC while referring to Programmable
Controllers, but in deference to the common use of this abbreviation for the
Personal Computer, we will use the term PLC (Programmable Logic Controllers)
in this manual instead of PC. This is in spite of the fact that the scope of present
day programmable controllers extends beyond the conventional interlocking
function and includes highly complex control requirements.

1.1 Development and growth of Programmable Controllers (PLC)-An
introduction

The PLC is now an indispensable part of any industrial control system. Originally
developed in the late 60’s to serve the automation needs of the automobile
industry in USA, PLCs have grown much beyond this sector and today it is
difficult to name an industry segment that does not use a PLC. The initial purpose
was to replace hardwired relay based interlocking circuits by a more flexible
device. The flexibility came through the programmability of the device, which
made it possible to use the same basic hardware for any application as well as
the ability to quickly change the program and modify the behavior of a circuit.
This obviously, is not possible with a hard-wired relay logic circuit.

Thus, the original PLC had:

Inputs in the form of contacts (called as digital inputs)
A processor
A software to control the processor
Outputs in the form of contacts, referred as a digital outputs (or
sometimes as voltages to drive external relays)

The Inputs and Outputs (called as I/O) were grouped in printed circuit boards,
usually plug-in type modules each containing circuits for several inputs or
outputs. Such modules grouped together in rack formation along with the
Processor module, the power supply module etc. form the hardware of the PLC.
Large PLC configurations usually contain several additional racks containing I/O
cards daisy chained with the main PLC. More complex systems have redundant
power supply modules and additional processors to increase the processing
power or to execute multiple tasks simultaneously.

The PLC market thus comprises various sizes of configurations:

Micro PLC’s of up to 100 I/O’s
Small PLC’s of between 100 and 200 I/O’s.
Medium PLC’s of up to a 1000 I/O’s.
Large PLC’s of more than 1000 I/O’s

PLC’s are now extensively used in many industrial sectors including
petrochemicals and food processing and are largely replacing conventional
devices in almost all fields of activity.

As the use of PLCs grew, they became more versatile and started including the
capabilities of 3 term PID controllers with analog inputs and outputs in addition to
the combinational logic systems of hardwired circuits. The analog input and
output signals usually follow the 4 to 20 mA signal standard, also developed in
the 60’s and which have become the de-facto standard of the instrumentation
industry.

Also, as the equipment, which the PLCs served to control became complex, with
several of them (each served by its own PLC) acting in tandem, it became
imperative to connect them together and share the information between them.
Communication links thus came to be a part of the modern PLC system. Figure
1.1 shows a typical PLC system incorporating several of the features cited above.

Figure 1.1

A typical PLC system

1.2 Need for standardization in programming approach

The software used in the early PLCs was of the ladder diagram type, which
closely resembles the circuit diagram with which all electrical engineers are
familiar and still remains one of the most popular PLC programming languages.
(We will see more about this language later in this chapter). The modern PLC
system has however grown far beyond its initial capabilities as a programmable
logic controller and needed more versatile tools for programming. The simple
ladder diagram method of programming was unequal to this task and had to be
supplemented. The resulting multiplicity of languages and sometimes dialects of
a basic language became too complex for users to handle, with each vendor’s
product requiring use of their proprietary programming language/tools.
Interoperability of PLC’s of different vendors also caused problems of achieving
integrated control.

The development of MAP (Manufacturing Automation Protocol) by General
Motors was an initiative to enable communication between the PLC’s of diverse
manufacturers. More than the standardization of programming languages, the
MAP initiative’s main objective was communication between PLC’s. The MAP
standard could achieve this objective but at a very high hardware cost and still
had performance limitations.

PLC manufacturers realized that the future growth of PLC and their widespread
use in industry would not be possible unless the fundamental issue of program
portability is addressed. Thus started a move for a uniform programming
approach to be adopted by all the vendors through a basic programming
standard. While certain additional capabilities or extensions could be built-in to
their product by different vendors, the basic features were to be uniform thus
ensuring portability of code and interoperability. IEC-1131-3 is a result of this
effort and has been evolved on a consensual basis by largely adopting the
prevalent programming practices of major manufacturers in the PLC industry.

Another standardization initiative is by the Instrument Society of America (ISA)
whose Fieldbus is an attempt to facilitate interconnection of devices distributed in
the field such as pressure transmitters, temperature controllers, valve positioning
systems etc. Though some of the issues of the structure of internal software of

these devices are addressed in the fieldbus standard, the standard does not
cover languages used for their programming.

1.3 Drawbacks in conventional programming methodology

As discussed in the previous section, most PLCs use some form of ladder
Diagram based programming a typical example of which is given in figure 1.2
below.

Figure 1.2

A typical ladder diagram

Note how similar this diagram is to the conventional circuit diagram and how easy
it is to follow its action. The Diagram describes the logic used for starting a motor
direct on line. START and STOP are command inputs received from a control
station. FAULT is a signal from protection scheme of the motor. When START is
ON it causes the output COIL to pick up. The START and STOP commands are
of momentary (pulsed) type and the status of this output is used to lock the
output in the status ‘true’ till STOP or FAULT inputs change status. In addition
to being simple, many PLCs also give a dynamic display that shows the status of
all these inputs and outputs in real time during the running of the system. Any
malfunction both in the external signals or in the program itself is thus easily
identified and corrected.

However, this programming approach has a number of limitations in the context
of the modern PLC. We will discuss the areas where conventional programming
approach proves inadequate in some detail below.

The limitations are:

Lack of software structure
Problems in reusability
Poor data structure definition
Lack of support for describing sequential behavior
Difficulty in handling complex arithmetical operations

Software structure

One of the main programming requirements when dealing with complex control

systems is to be able to break down the task into a number of smaller, less
complex problems and establish clear interconnections to one another. These
individual pieces of code are called program blocks or program units. Since these
program units may be coded by different programmers and used in different parts
of a control system by others, care should be taken to ensure that internal
registers and memory locations of a subroutine do not get changed inadvertently
by another program block as a result of faulty code. This needs the data to be
properly encapsulated or hidden, which is not possible with the ladder
programming approach. This makes use of this program technique difficult for
complex tasks as any errors can result in catastrophic behavior of the control
system.

Software reuse

In many control problems, one finds that certain logic gets repeated in a number
of places. With the ladder diagram programs it is necessary to duplicate the
same circuit over and over again. This makes the memory usage and the
program execution inefficient. For example, the basic motor starting scheme cited
in figure 1.2 may get repeated for a number of motors in a system. Arranging the
logic sequence of this control in a block, which can be invoked many times (with
minor variations and changes in the input/output designations) would simplify the
program greatly. Facility for such code reuse is usually limited in conventional
ladder diagram programs.

Data structure

In the conventional approach to programming, digital data (both input and output)
are represented as single bits. Analog data is kept in the form of registers, which
are generally 16 bits long. In this approach, there is no facility to represent
related data in a group in the form of a predetermined structure.

Modern programs approach control problems using object orientation. For
example, pressure sensors may be represented as a class of objects with each
different sensor being an instance of this class. A pressure sensor may have
certain data associated with it. These can typically be: the current value of
pressure, a set point for the pressure, a time value for setting an output flag when
the set value of pressure is reached, a digital alarm output etc. It is possible to
carry out a set of logical operations (such as generating an alarm in the event of
a set value of pressure being exceeded beyond a set interval of time) by using
the values in the associated data structure. It is possible to use this data block for
different pressure sensors (each an instance of the class) by changing the data
object’s contents. To be able to do this, the data values associated with each

sensor must have a unique name but all of them will have a common data
definition. In PLC programming terminology, this data class is called as a Data
Structure with each instance of the sensor being represented by a variable.

Figure 1.3

Data structure for pressure sensors

Normally, in the conventional ladder programming methodology, the different
pieces of data described above are spread throughout program (and the PLC
memory) and because of this, data violations can occur easily. The lack of facility
for defining a data structure in the conventional ladder programming method will
therefore impose constraints in implementing object oriented control strategies.

Support for sequential operations

Many industrial controls perform operations as per a set sequence, particularly
those relating to automate operation of processes or machinery. Such operations
involve:

An initial step
A transition with an associated condition; On fulfilling the condition,
deactivate the previous step and go to the next step
The subsequent step where a set of operations will be performed
The next transition followed by the next step and so on till the end of the
sequence

Representing a sequence of this nature logically in a ladder diagram is somewhat
cumbersome. We will illustrate this by an example. A typical chemical batch
process for a reactor vessel works in the fashion described below. (Refer to
figure 1.4).

Figure 1.4

A typical chemical process

The process sequence goes like this:

1. Start of process
2. Check readiness of all systems. If ready, go forward
3. Open valve for reagent A
4. Measure volume of flow of A and compare against set value
5. Close A when the set value is reached and open valve for reagent B
6. Measure volume of flow of B and compare with set value
7. Close B when the set value is reached. Start stirring. Start timer
8. Check for time to reach a predetermined set value
9. Stop stirring when the set value is reached. Reset timer. Open Drain

valve
10. Check flow and compare to sum of volumes of A and B
11. Close drain when total flow is equal to the sum. Reset all flow sensors.

Go back to step 1

We may introduce further complexities in this process by incorporating additional
parallel steps. For example, it may be required that a certain temperature needs
to be maintained during step 7. To do this we may introduce a sequence for
monitoring the temperature and switching an electrical heater on and off at
certain temperature limits.

To represent the sequence of steps 1 to 11 logically in a ladder diagram, we may
need to arrange the ladder rungs in different groups. One group consists of the
transition checks (represented in s. no. 2, 4, 6, 8 and 10). The next group
consists of the transition states to signify which step is currently active. (In the
above example the steps are 1, 3, 5, 7, 9, and 11 with one of them being active
at any point of time.) The third is the step actions, i.e., perform certain
predetermined tasks at each step as dictated by the process. Based on this
approach, the above example can be represented by the following ladder
diagram in figure 1.5.

While this looks fairly straight forward, the complexities of the nature cited in the
above example, with additional parallel action sequences, will make the process
more difficult to represent and understand if we have to extend the above ladder
diagram program. (We would invite the readers who may be familiar with creating
ladder logic circuits to try doing this to have a ‘feel’ of the programming
limitations this method imposes).

Figure 1.5

Ladder diagram of a typical batch process

Execution control

Execution control is another aspect of process control systems, which calls for
more sophisticated programming methodologies. To understand this, we have to
first look the sequence of operation of a PLC system. Refer figure 1.6 below.

Figure 1.6

PLC operation sequence

PLCs execute a program in a cyclic order. To begin with, all input values are read
via the I/O modules and the status stored in PLC memory. Next the ladder rungs
are executed starting from the top and proceeding downwards till all rungs are
covered. The output values are stored in the PLC memory as each rung is
executed. Finally all the output values held in the memory are written to the
physical outputs in a single operation. The time of executing the entire program
thus depends on the length of the program and the complexity of the logic.
Generally, longer the program, higher is the time for each pass of execution
(scan cycle time). This makes the behavior of such a system non-deterministic.
That is, there is no guarantee that when there is a change of status of a particular
input, the actions to be taken as a result will be performed within a stipulated
time. (Remember, we are talking of milliseconds here).

While the delay may be an acceptable in many cases, there may be situations
where a non-deterministic behavior can cause problems. For example, in a
process, a particular condition may call for extremely fast sequence of corrective
actions without which catastrophic failures may occur. To delay such corrective
action for a whole scan cycle time (the maximum possible delay) may not be an
acceptable option. If it is required that the action is initiated within 100
milliseconds and the PLC has a scan rate of 1000 milliseconds, the objective is
NOT going to be achieved. The only way this can be done is to divide the
program into different sections and arrange the execution in such a way that
critical sections are scanned at faster intervals. This kind of control is generally
difficult to implement in the ladder diagram approach.

Similarly, implementing PID control functions in PLCs for processes requiring fast
control behavior will need more sophisticated programming approach. The non-
deterministic nature of the simple ladder diagram program can give rise to
problems of control and a change in the program due to, say the addition of a few
rungs of interlock conditions, may influence the way the system performs its

control function.

Arithmetic operations

It is possible that certain logic steps in a control system may require arithmetic
operations to be performed. For example, in the control system described in the
earlier section, step no. 10 involves an addition of two set values to decide when
the transition to the next step should occur. Ladder diagram programming in most
implementations can perform such simple arithmetical operations. However more
complex arithmetical or trigonometric expressions will pose difficulties and will
have to be tackled by workarounds.

1.4 Features of IEC-1131-3 language definition

IEC 1131-3 was based on a review of the languages that were already in use
with the PLCs of market leading brands. A new set of programming languages
were then defined based on the language variants available, their shortcomings
(as explained in the previous section) and the need for enhancements and
capabilities to meet the new demands on PLCs. In doing so, the possibilities of
new PLC capabilities that may be developed in the near term future were also
kept in view. The major new features offered by the new set of PLC languages
are as follows.

Ability to break down a large complex task into many Program Organisational
Units (POU) each performing a part of the main task. This includes functions,
function blocks and programs. A hierarchical program structure has thus been
established. Both top-down and bottom-up development approach is now
possible using the software architecture defined in the standard.

Software reuse has been made possible by the use of functions and function
blocks. Standard functions are available for mathematical and logical operations
and the need for coding by individual programmers is avoided. Repeatable tasks
of complex nature can be coded in the form of Function blocks, which can be
called wherever required in a program. There is now a very real possibility of third
party software modules being developed for standard control applications and
made available to the developer community on a commercial basis.

Definition of data types with error control is possible. The variables used are
categorised into various data types and if a program has mismatches of data
type, it will be shown up by the program station (or the language compiler) before
loading it into the PLC.

Full execution control is possible. Different parts of a program, for example,
may be scanned at different rates, thus enabling faster scan times for fast
changing and critical parameters and a slow scan time for variables that are not
likely to change quickly (e.g. temperature of the reactor vessel in the example in
figure 1.4).

Ability to define process control sequences has been made possible
using Sequential Function Charts (one of the languages defined by the
standard). The sequence may have paths, which operate in parallel as well as
alternate branches depending on specific process conditions.

Definition of data structure enables an entire set of data to be defined as a
single data object (usually representing a particular class of object). As seen in
the previous section, a pressure sensor may be associated to a particular data
structure, which defines all the variables that are possibly required for this class
of object in the process control context.

Flexible use of language is permitted by the standard. Different parts of a
control problem may be expressed using any of the languages defined in the
standard based on the needs of the control and its suitability to the task in
question.

Language standard and methods of programming recommended by the
standard help in solving problems of all possible PLC applications as well as
ensure a degree of portability of the control programs between equipment of
different vendors who comply with the standard.

In order to achieve these features IEC 1131-3 has defined a set of five
languages, two of them textual and the others graphical. We will describe these
in the ensuing modules in detail. However a brief note on each of these
languages here will be appropriate.

Structured text is a language of textual type, which resembles the high level
Pascal language and can be used for expressing various common control
requirements.

Function block diagram is a graphical language, which represents signal and
data flow through interconnected function blocks and functions. Functions and
function blocks are both reusable software elements.

Ladder diagram is a graphical language as we saw earlier and is based on relay
logic diagrams used to represent process interlocks. The standard in addition,

permits use of functions and function blocks within a ladder diagram.

Instruction list is an assembler-like textual language, which manipulates the
internal registers of a PLC and reads or writes values from/into variables and
memory locations.

Sequential function chart is a graphical language used for representing
complex sequential behaviour of processes as shown in the example in figure
1.4.

Many implementations offer facilities for conversion of a program module written
using one of the above IEC languages into another and are said to have the
feature of inter-language portability. This facilitates code review and
maintenance by permitting the code to be viewed in any language with which a
reviewer or maintenance programmer is most familiar. There is however some
limitations to this method as certain types of operations specific to a language
may not easily translate into a different language directly.

Inter-system portability is another issue that has been receiving a lot of
attention. There are a few constraints to be overcome before a control program
written for a certain PLC vendor’s implementation is fully portable to another
vendor’s. IEC standard defines a broad set of language features but does not
insist that all of them must be supported by an implementation. If a particular
feature is not supported by a target implementation but is used in the original
program, porting can pose problems. Similarly, certain features are
implementation dependent, (e.g., maximum number of array subscripts) which
can come in the way of successful portability. These issues arising out of weak
compliance requirements adopted by the standard have been sought to be
addressed by agencies such as PLC Open. Conformity to the compliance level
requirements of these bodies can ensure inter-system portability.

And finally, the matter of encapsulation of data and procedure: in order that
software integrity is not compromised, it is necessary to hide well-tested code
modules (such as functions) and if possible, the data that they contain, so that
they are not directly ‘visible’ to a programmer. This is because errors can
inadvertently be introduced in the program in the course of working on it. Use of
functions, function blocks, structures etc. stipulated in the standard effectively
encapsulates data and code to varying degrees and preserves the integrity of the
system.

1.5 Summary

IEC-1131-3 standard tackles many of the limitations imposed by the earlier
generation of PLC languages. It provides a variety of languages suitable for
different control tasks and provides both inter-language and inter-system
portability. Reuse of software is possible though functions and function blocks.
Integrity of code and data is ensured by encapsulation. Hierarchical software
design approach makes development and maintenance of applications more
structured and enhances both software quality and productivity.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

